Publications by authors named "M Patchen"

The interaction of the human FcγRIIA with immune complexes (ICs) promotes neutrophil activation and thus must be tightly controlled to avoid damage to healthy tissue. Here, we demonstrate that a fungal-derived soluble β-1,3/1,6-glucan binds to the glycosphingolipid long-chain lactosylceramide (LacCer) to reduce FcγRIIA-mediated recruitment to immobilized ICs under flow, a process requiring high-affinity FcγRIIA-immunoglobulin G (IgG) interactions. The inhibition requires Lyn phosphorylation of SHP-1 phosphatase and the FcγRIIA immunotyrosine-activating motif.

View Article and Find Full Text PDF

Background: BTH1677, a beta-glucan pathogen-associated molecular pattern molecule, drives an anti-cancer immune response in combination with oncology antibody therapies. This phase II study explored the efficacy, pharmacokinetics (PK), and safety of BTH1677 combined with bevacizumab/carboplatin/paclitaxel in patients with untreated advanced non-small cell lung cancer (NSCLC).

Methods: Patients were randomized to the BTH1677 arm (N = 61; intravenous [IV] BTH1677, 4 mg/kg, weekly; IV bevacizumab, 15 mg/kg, once each 3-week cycle [Q3W]; IV carboplatin, 6 mg/mL/min Calvert formula area-under-the-curve, Q3W; and IV paclitaxel, 200 mg/m, Q3W) or Control arm (N = 31; bevacizumab/carboplatin/paclitaxel as above).

View Article and Find Full Text PDF

Introduction BTH1677, a 1,3-1,6 beta-glucan immunomodulator, stimulates a coordinated anti-cancer immune response in combination with anti-tumor antibody therapies. This phase II study explored the efficacy, pharmacokinetics (PK), and safety of BTH1677 combined with cetuximab/carboplatin/paclitaxel in untreated stage IIIB/IV non-small cell lung cancer (NSCLC) patients. Methods Patients were randomized 2:1 to the BTH1677 arm (N=60; BTH1677, 4 mg/kg, weekly; cetuximab, initial dose 400 mg/m and subsequent doses 250 mg/m, weekly; carboplatin, 6 mg/mL/min AUC (area-under-the-curve) by Calvert formula, once each 3-week cycle [Q3W]); and paclitaxel, 200 mg/m, Q3W) or Control arm (N=30; cetuximab/carboplatin/paclitaxel as above).

View Article and Find Full Text PDF

Imprime PGG (Imprime), an intravenously-administered, soluble β-glucan, has shown compelling efficacy in multiple phase 2 clinical trials with tumor targeting or anti-angiogenic antibodies. Mechanistically, Imprime acts as pathogen-associated molecular pattern (PAMP) directly activating innate immune effector cells, triggering a coordinated anti-cancer immune response. Herein, using whole blood from healthy human subjects, we show that Imprime-induced anti-cancer functionality is dependent on immune complex formation with naturally-occurring, anti-β glucan antibodies (ABA).

View Article and Find Full Text PDF

Background: Imprime PGG (β(1,6)-[poly-(1,3)-D-glucopyranosyl]-poly-β(1,3)-D-glucopyranose) is an innate immune cell modulator that primes neutrophils and monocytes/macrophages to exert antitumor activity against complement opsonized tumor cells. In patients with KRAS-mutant colorectal cancer (CRC), cetuximab alone is ineffective; however, it can bind to tumor cells and induce opsonization for recognition by Imprime PGG-bound innate immune cells. The primary objective of this study was to determine the antitumor activity of Imprime PGG in combination with cetuximab in patients with KRAS-mutant metastatic CRC.

View Article and Find Full Text PDF