Current biomedical imaging techniques are vital for the diagnosis of various diseases. They are related to the development of multimodal probes encompassing all the functionalities required for comprehensive imaging. In this context, we applied a simple and reproducible wet synthesis route to produce such probes.
View Article and Find Full Text PDFTitanium nitride is an exciting plasmonic material, with optical properties similar to gold. However, synthesizing TiN nanocrystals is highly challenging and typically requires solid-state reactions at very high temperatures (800-1000°C). Here, the synthesis of TiN nanocrystals is achieved at temperatures as low as 350°C, in just 1 h.
View Article and Find Full Text PDFThe precursor conversion chemistry and surface chemistry of Cu N and Cu PdN nanocrystals are unknown or contested. Here, we first obtain phase-pure, colloidally stable nanocubes. Second, we elucidate the pathway by which copper(II) nitrate and oleylamine form Cu N.
View Article and Find Full Text PDFMetal nitride nanocrystals are a versatile class of nanomaterials. Depending on their chemical composition, the optical properties vary from those of traditional semiconductor nanocrystals (called quantum dots) to more metallic character (featuring a plasmon resonance). However, the synthesis of colloidal metal nitride nanocrystals is challenging since the underlying precursor chemistry is much less developed compared to the chemistry of metal, metal chalcogenide or metal phosphide nanocrystals.
View Article and Find Full Text PDF