Publications by authors named "M Paredes"

The development of the human neocortex is highly dynamic, involving complex cellular trajectories controlled by gene regulation. Here we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and the primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence.

View Article and Find Full Text PDF

Background: Institutions of higher education (IHE) have been a focus of SARS-CoV-2 transmission studies but there is limited information on how viral diversity and transmission at IHE changed as the pandemic progressed.

Methods: Here we analyze 3606 viral genomes from unique COVID-19 episodes collected at a public university in Seattle, Washington from September 2020 to September 2022.

Results: Across the study period, we found evidence of frequent viral transmission among university affiliates with 60% (n = 2153) of viral genomes from campus specimens genetically identical to at least one other campus specimen.

View Article and Find Full Text PDF

GABAergic neurons are an essential cellular component of neural circuits. Their abundance and diversity have enlarged significantly in the human brain, contributing to the expanded cognitive capacity of humans. However, the developmental mechanism of the extended production of GABAergic neurons in the human brain remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the roles of the hippocampus and prefrontal cortex in learning and cognition, focusing on their molecular development through innovative genomic techniques.
  • Researchers used over 53,000 single-nucleus profiles to analyze DNA methylation and chromatin conformation changes, finding that these processes occur at different times during development.
  • The findings reveal distinct chromatin interactions in neurons versus glial cells and identify specific genetic variants associated with schizophrenia, highlighting the potential of single-cell multi-omics in understanding brain development and neuropsychiatric disorders.
View Article and Find Full Text PDF