Publications by authors named "M P Smolina"

Thirteen breast cancer cell lines were grown in traditional two-dimensional (2D) monolayer and three-dimensional (3D) laminin-rich extracellular matrix (lrECM) culture models. Microarray-based transcriptional profiling data were published for these cell lines under both culture conditions. Colonies embedded in Matrigel matrix were fixed in formalin, embedded in paraffin and cut into 4 μm thick sections.

View Article and Find Full Text PDF

Infrared imaging was applied to investigate a reconstituted basement membrane, known as Matrigel, in three-dimensional cell cultures. Matrigel, in the vicinity of the colonies, was examined for four breast cancer cell lines presenting different 3D colony morphologies. MCF-7 and T-47D present mass colonies, SKBR-3 grape-like colonies and MDA-MB-231 stellate colonies associated with a more invasive phenotype.

View Article and Find Full Text PDF

Infrared spectroscopy has brought invaluable information about proteins and about the mechanism of action of enzymes. These achievements are difficult to transpose to living organisms as all biological molecules absorb in the mid infrared, with usually a high degree of overlap. Deciphering the contribution of each enzyme is therefore almost impossible.

View Article and Find Full Text PDF

One current challenge in the field of breast cancer infrared imaging is the identification of carcinoma cell subtypes in the tissue. Neither sequencing nor immunochemistry is currently able to provide a cell by cell thorough classification. The latter is needed to build accurate statistical models capable of recognizing the diversity of breast cancer cell lines that may be present in a tissue section.

View Article and Find Full Text PDF

Current evaluation of histological sections of breast cancer samples remains unsatisfactory. The search for new predictive and prognostic factors is ongoing. Infrared spectroscopy and its potential to probe tissues and cells at the molecular level without requirement for contrast agents could be an attractive tool for clinical and diagnostic analysis of breast cancer.

View Article and Find Full Text PDF