Ants are abundant, diverse, and occupy nearly all habitats and regions of the world. Previous work has demonstrated that ant diversification coincided with the rise of the angiosperms, and that several plant traits evolved as ants began to expand their nesting and foraging habits. In this study, we investigate whether associations with plants enabled niche expansion and are linked to climatic niche evolution in ants.
View Article and Find Full Text PDFThere is a looming environmental crisis characterized by widespread declines in global biodiversity, coupled with the establishment of introduced species at accelerated rates. We quantified how multi-species invasions affect litter ant communities in natural ecosystems by leveraging museum records and contemporary collections to assemble a large (18,990 occurrences, 6,483 sampled local communities, and 177 species) 54-year (1965-2019) dataset for the entire state of Florida, USA. Nine of ten species that decreased most strongly in relative abundance ("losers") were native, while nine of the top ten "winners" were introduced species.
View Article and Find Full Text PDFTropical regions harbor a substantial diversity of lichenized fungi, but face numerous threats to their persistence, often even before previously unknown species have been described and their evolutionary relationships have been elucidated. (Ramalinaceae) is a lichen-forming genus of fungi that produces crustose thalli, and includes a number of lineages occupying tropical rain forests; however, taxonomic and phylogenetic work on this clade is limited. Here we leverage both morphological and sequence data to describe a new species from the tropics, .
View Article and Find Full Text PDFPremise: The long-term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered "extremophiles," lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smith et al.
View Article and Find Full Text PDFEvolution of high-productivity angiosperms has been regarded as a driver of Mesozoic ecosystem restructuring. However, terrestrial productivity is limited by availability of rock-derived nutrients such as phosphorus for which permanent increases in weathering would violate mass balance requirements of the long-term carbon cycle. The potential reality of productivity increases sustained since the Mesozoic is supported here with documentation of a dramatic increase in the evolution of nitrogen-fixing or nitrogen-scavenging symbioses, including more than 100 lineages of ectomycorrhizal and lichen-forming fungi and plants with specialized microbial associations.
View Article and Find Full Text PDF