Studying brain diseases and developing therapies requires versatile in vitro systems for long-term neuronal cultures. SH-SY5Y neuroblastoma cells are ideal for modeling neurodegenerative diseases. Although SH-SY5Y cells are commonly used in 2D cultures, 3D systems offer more physiologically relevant models.
View Article and Find Full Text PDFCellulose nanocrystals (CNCs) are bio-based nanoparticles that, under the right conditions, self-align into chiral nematic liquid crystals with a helical pitch. In this work, we exploit the inherent confocal effect of second-harmonic generation (SHG) microscopy to acquire highly resolved three-dimensional (3D) images of the chiral nematic phase of CNCs in a label-free manner. An in-depth analysis revealed a direct link between the observed variations in SHG intensity and the pitch.
View Article and Find Full Text PDFThis article reports on a bioanalytical sensor device that hosts three different transducer principles: impedance spectroscopy, quartz-crystal microbalance with dissipation monitoring, and the thermal-current-based heat-transfer method. These principles utilize a single chip, allowing one to perform either microbalance and heat transfer measurements in parallel or heat transfer and impedance measurements. When taking specific precautions, the three measurement modalities can even be used truly simultaneously.
View Article and Find Full Text PDFThe blood flow through our microvascular system is a renowned difficult process to understand because the complex flow behavior of blood is intertwined with the complex geometry it has to flow through. Conventional 2D microfluidics has provided important insights, but progress is hampered by the limitation of 2-D confinement. Here we use selective laser-induced etching to excavate non-planar 3-D microfluidic channels in glass that consist of two generations of bifurcations, heading towards more physiological geometries.
View Article and Find Full Text PDFDifferent microscopy and scattering methods used in the literature to determine the dimensions of cellulose nanocrystals derived from cotton and bacterial cellulose were compared to investigate potential bias and discrepancies. Atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), depolarized dynamic light scattering (DDLS), and static light scattering (SLS) were compared. The lengths, widths, and heights of the particles and their respective distributions were determined by AFM.
View Article and Find Full Text PDF