Publications by authors named "M P Knadler"

Basal insulin peglispro (BIL) consists of insulin lispro with a 20-kDa polyethylene glycol (PEG) moiety covalently attached to lysine B28. Because chronic parenteral administration of PEGylated proteins to animals has sometimes resulted in PEG vacuolation of tissue macrophages, renal tubular cells, and choroid plexus ependymal cells, we investigated whether chronic subcutaneous (sc) injection of BIL in rats (52 weeks) and dogs (39 weeks) was associated with systemic toxicities or other changes, including vacuolation of tissue macrophages, renal tubular cells, and ependymal cells. Rats and dogs received daily sc injections of BIL (rats: 0.

View Article and Find Full Text PDF

Background: Restoration of the physiologic hepatic-to-peripheral insulin gradient may be achieved by either portal vein administration or altering insulin structure to increase hepatic specificity or restrict peripheral access. Basal insulin peglispro (BIL) is a novel, PEGylated basal insulin with a flat pharmacokinetic and glucodynamic profile and altered hepatic-to-peripheral action gradient. We hypothesized reduced BIL exposure in peripheral tissues explains the latter, and in this study assessed the adipose tissue interstitial fluid (ISF) concentrations of BIL compared with human insulin (HI).

View Article and Find Full Text PDF

Despite peptide transporter 1 (PEPT1) being responsible for the bioavailability for a variety of drugs, there has been little study of its potential involvement in drug-drug interactions. Pomaglumetad methionil, a metabotropic glutamate 2/3 receptor agonist prodrug, utilizes PEPT1 to enhance absorption and bioavailability. In vitro studies were conducted to guide the decision to conduct a clinical drug interaction study and to inform the clinical study design.

View Article and Find Full Text PDF

Aims: Basal insulin peglispro (BIL) is a novel PEGylated basal insulin with a flat pharmacokinetic and glucodynamic profile and reduced peripheral effects, which results in a hepato-preferential action. In Phase 3 trials, patients with T1DM treated with BIL had lower prandial insulin requirements, yet improved prandial glucose control, relative to insulin glargine (GL). We hypothesized that this may be because of an enhanced sensitivity to prandial insulin with BIL resulting from lower chronic peripheral insulin action.

View Article and Find Full Text PDF

Purpose: Determine the pharmacokinetics of insulin peglispro (BIL) in 5/6-nephrectomized rats and study the absorption in lymph duct cannulated (LDC) sheep.

Methods: BIL is insulin lispro modified with 20-kDa linear PEG at lysine B28 increasing the hydrodynamic size to 4-fold larger than insulin lispro. Pharmacokinetics of BIL and insulin lispro after IV administration were compared in 5/6-nephrectomized and sham rats.

View Article and Find Full Text PDF