Publications by authors named "M P Dvores"

The impact of the stereochemistry of the glycosyl cation species upon its dynamic properties is examined together with their vibrational spectra in order to gain insight into the effects of configurational isomerism on conformer dynamics and proton mobility. molecular dynamics (AIMD) simulations and infrared multiple photon dissociation (IRMPD) spectroscopy explore the conformational and reactive dynamics of two pairs of glycosyl cation isomers: (1) protonated α- and β- anomers of methyl-D-galactopyranoside and (2) the oxocarbenium ions of the D-aldohexose C2 epimers galactose and talose. Analysis of these simulations together with experimental spectroscopy, interpreted by anharmonic calculations, points to the key role played by the intramolecular hydrogen bonds which are present in a unique pattern and extent in each isomer.

View Article and Find Full Text PDF

Protonated intermediates are postulated to be involved in the rate determining step of many sugar reactions. This paper presents a study of protonated sugar species, isolated in the gas phase, using a combination of infrared multiple photon dissociation (IRMPD) spectroscopy, classical ab initio molecular dynamics (AIMD) and quantum mechanical vibrational self-consistent field (VSCF) calculations. It provides a likely identification of the reactive intermediate oxocarbenium ion structure in a d-galactosyl system as well as the saccharide pyrolysis product anhydrogalactose (that suggests oxocarbenium ion stabilization), along with the spectrum of the protonated parent species: methyl d-galactopyranoside-H+.

View Article and Find Full Text PDF

This study presents a method for one-step formation of poly(ethylene oxide) nanofibers incorporating nanoparticles of a poorly water-soluble compound. Using the new method reported here, nanofiber-nanoparticle composites are fabricated in one step by electrospinning of an oil-in-water microemulsion, in which a model material, propylparaben, has been dissolved within the volatile dispersed phase in the presence of a high-molecular-weight polymer. The approach is based on nanoscale confinement to the dispersed phase of an oil-in-water microemulsion with a volatile oil phase, in which the poorly water-soluble materials are dissolved.

View Article and Find Full Text PDF