Degradable polar hydrophobic ionic polyurethanes (D-PHI) are an emerging class of biomaterials with particular significance for blood-contacting applications due to their immunomodulatory effects and highly customizable block chemistry. In this manuscript, D-PHI polymer was formulated as a nanoparticle excipient for the first time by inverse emulsion polymerization. The nanoparticles were optimized with consideration of diameter, surface charge, size variability, and yield as a delivery vehicle for a custom vascular therapeutic peptide.
View Article and Find Full Text PDFBackground: Treatment of occluded vessels can involve angioplasty, stenting, and bypass grafting, which can be limited by restenosis and thrombosis. Drug-eluting stents attenuate restenosis, but the current drugs used are cytotoxic, causing smooth muscle cell (SMC) and endothelial cell (EC) death that may lead to late thrombosis. N-cadherin is a junctional protein expressed by SMCs, which promotes directional SMC migration contributing to restenosis.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
July 2023
Despite recent advancements in vascular disease treatments, thrombosis and poor long-term vessel patency remain significant barriers to effective endovascular intervention. Current balloon angioplasty and stenting techniques effectively restore acute blood flow in occluded vessels but have persistent limitations. Damage to the arterial endothelium caused by injury during catheter tracking triggers neointimal hyperplasia and the release of proinflammatory factors leading to increased risk of thrombosis and restenosis.
View Article and Find Full Text PDF