Here we explored new 1,5-disubstituted pyrrolidin-2-ones 1, 2 and 5-aryl-3,3,4,5-tetrahydropyrrolo[1,2-]quinoline-1(2)-ones 3 as inhibitors of tubulin polymerization. We evaluated their effects on microtubule dynamics and on the proliferation of A549 cells, using flow cytometry-based cell cycle analysis. The results were verified with phase-contrast microscopy in three cancer cell lines: A549, HeLa and MCF-7.
View Article and Find Full Text PDFMicrotubules are essential cytoskeletal polymers, which exhibit stochastic transitions between assembly and disassembly, known as catastrophes and rescues. Understanding of catastrophes, rescues, and their control by drugs and microtubule associated proteins (MAPs) has been informed by in vitro reconstitutions of microtubule dynamics. In such experiments microtubules are typically observed on a flat surface of the coverslip.
View Article and Find Full Text PDFIt has been hypothesized that liquid polyamorphism, the existence of multiple amorphous states in a single-component substance, may be caused by molecular or supramolecular interconversion. A simple microscopic model [Caupin and Anisimov, , , 185701] introduces interconversion in a compressible binary lattice to generate various thermodynamic scenarios for fluids that exhibit liquid polyamorphism and/or water-like anomalies. Using this model, we demonstrate the dramatic effects of interconversion on the interfacial properties.
View Article and Find Full Text PDFCells assemble dynamic protein-based nanostructures far from equilibrium, such as microtubules, in a process referred to as dissipative assembly. Synthetic analogues have utilized chemical fuels and reaction networks to form transient hydrogels and molecular assemblies from small molecule or synthetic polymer building blocks. Here, we demonstrate dissipative cross-linking of transient protein hydrogels using a redox cycle, which exhibit protein unfolding-dependent lifetimes and mechanical properties.
View Article and Find Full Text PDF