Publications by authors named "M Ouzzine"

Genetic mutations in the Xylt1 gene are associated with Desbuquois dysplasia type II syndrome characterized by sever prenatal and postnatal short stature. However, the specific role of XylT-I in the growth plate is not completely understood. Here, we show that XylT-I is expressed and critical for the synthesis of proteoglycans in resting and proliferative but not in hypertrophic chondrocytes in the growth plate.

View Article and Find Full Text PDF

Glycosylation is a ubiquitous and universal cellular process in all domains of life. In eukaryotes, many glycosylation pathways occur simultaneously onto proteins and lipids for generating a complex diversity of glycan structures. In humans, severe genetic diseases called Congenital Disorders of Glycosylation (CDG), resulting from glycosylation defects, demonstrate the functional relevance of these processes.

View Article and Find Full Text PDF

TMEM165 deficiency leads to skeletal disorder characterized by major skeletal dysplasia and pronounced dwarfism. However, the molecular mechanisms involved have not been fully understood. Here, we uncover that TMEM165 deficiency impairs the synthesis of proteoglycans by producing a blockage in the elongation of chondroitin-and heparan-sulfate glycosaminoglycan chains leading to the synthesis of proteoglycans with shorter glycosaminoglycan chains.

View Article and Find Full Text PDF

Activated carbons were prepared from different Amazonian fruit waste-derived biomass residues from the Amazon to store CO at low pressure. The samples were carbonized in under flowing N flow atmosphere and activated with KOH. The carbon materials obtained were physically and structurally characterized by the analysis of N isotherms for textural characterization, X-ray fluorescence (XRF), ash content, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and applied for CO adsorption.

View Article and Find Full Text PDF

Here we propose a general strategy to label carbohydrates with N-methyl-anthranilic acid at the anomeric position. Through two examples, we demonstrate that the generated glycoprobes are suitable for fluorescence-based binding/competition assays. Our approach is expected to readily generate series of glycoprobes dedicated to screening assays for the discovery of drugs targeting carbohydrate-protein interactions.

View Article and Find Full Text PDF