Analysis of glass-based artworks is important for authentication purposes. In recent years, there have been rapid advancements and improvements in the characterization of glass objects using different analytical approaches. The present study presents an interdisciplinary and multi-analytical authentication approach that provides useful tools and markers to unmask possible imitations, counterfeiting, and forgeries in Cultural Heritage glass beads by comparing the composition of historical and modern glass beads.
View Article and Find Full Text PDFA major challenge in heritage science is the non-invasive cross-sectional analysis of paintings. When low-energy probes are used, the presence of opaque media can significantly hinder the penetration of incident radiation, as well as the collection of the backscattered signal. Currently, no technique is capable of uniquely and noninvasively measuring the micrometric thickness of heterogeneous materials, such as pictorial layers, for any painting material.
View Article and Find Full Text PDFThe preservation of the integrity of artworks and cultural heritage items during characterization and conservation operations is of high priority, therefore, the application of non-invasive techniques is commonly suggested and recommended. Nonlinear optical microscopies (NLOM), based on the use of tightly focused pulsed femtosecond lasers, are emerging techniques for structural and chemical analysis of heritage objects with micrometric lateral and axial resolution. The results obtained with a set of optical and spectroscopic techniques for the chemical and physical characterization of grisaille paint layers on historical stained glasses, from different chronologies and provenance in Spain, are presented in this work.
View Article and Find Full Text PDFThe evolution of the magnetic anisotropy directions has been studied in a magnetite (FeO) thin film grown by infrared pulsed-laser deposition on SrTiO(100):Nb substrate. The magnetic easy axes at room temperature are found along the in-plane 〈100〉 film directions, which means a rotation of the easy axis by 45° with respect to the directions typically reported for bulk magnetite and films grown on single-crystal substrates. Moreover, when undergoing the Verwey transition temperature, T, the easy axis orientation evolves to the 〈110〉 film directions.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2019
The documentation and monitoring of cleaning operations on paintings benefit from the identification and determination of thickness of the materials to be selectively removed. Since in artworks diagnosis the preservation of the object's integrity is a priority, the application of non-invasive techniques is commonly preferred. In this work, we present the results obtained with a set of non-invasive optical techniques for the chemical and physical characterization of six copper-phthalocyanine (Cu-Pc) acrylic paints.
View Article and Find Full Text PDF