Publications by authors named "M Ottenio"

Objective: Tissue engineering (TE) is the study and development of biological substitutes to restore, maintain or improve tissue function. Tissue engineered constructs (TECs) still present differences in mechanical and biological properties compared to native tissue. Mechanotransduction is the process through which mechanical stimulation triggers proliferation, apoptosis, and extracellular matrix synthesis, among other cell activities.

View Article and Find Full Text PDF

Peripheral venous catheter insertion (PVCI) is one of the most common procedures performed by healthcare professionals but remains technically difficult. To develop new medical simulators with better representativeness of the human forearm, an experimental study was performed to collect data related to the puncturing of human skin and a vein in the antebrachial area. A total of 31 volunteers participated in this study.

View Article and Find Full Text PDF

A literature review was conducted to develop more realistic medical simulators that better prepare aspiring health professionals to perform a medical procedure in vivo. Thus, this review proposes an approach that might assist researchers design improved medical simulators, particularly new materials that would enhance the sensation of touch for skin substitutes. By targeting the current needs in the field of simulation learning, we concluded that peripheral venous catheter insertion simulators lack realistic haptic feedback.

View Article and Find Full Text PDF

The performance of hernia treatment could benefit from more extensive knowledge of the mechanical behavior of the abdominal wall in a healthy state. To supply this knowledge, the antero-lateral abdominal wall was characterized in vivo on 11 healthy volunteers during 4 activities: rest, pullback loading, abdominal breathing and the "Valsalva maneuver". The elasticity of the abdominal muscles (rectus abdominis, obliquus externus, obliquus internus and transversus abdominis) was assessed using ultrasound shear wave elastography.

View Article and Find Full Text PDF

The anisotropic failure characteristics of human skin are relatively unknown at strain rates typical in impact biomechanics. This study reports the results of an experimental protocol to quantify the effect of dynamic strain rates and the effect of sample orientation with respect to the Langer lines. Uniaxial tensile tests were carried out at three strain rates (0.

View Article and Find Full Text PDF