Publications by authors named "M Ossiander"

Optical microcavities confine light to wavelength-scale volumes and are a key component for manipulating and enhancing the interaction of light, vacuum states, and matter. Current microcavities are constrained to a small number of spatial mode profiles. Imaging cavities can accommodate complicated modes but require an externally preshaped input.

View Article and Find Full Text PDF

Surface plasmon polaritons (SPPs) can confine and guide light in nanometer volumes and are ideal tools for achieving electric field enhancement and the construction of nanophotonic circuitry. The realization of the highest field strengths and fastest switching requires confinement also in the temporal domain. Here, we demonstrate a tapered plasmonic waveguide with an optimized grating structure that supports few-cycle surface plasmon polaritons with >70 THz bandwidth while achieving >50% light-field-to-plasmon coupling efficiency.

View Article and Find Full Text PDF

Metasurfaces, optics made from subwavelength-scale nanostructures, have been limited to millimeter-sizes by the scaling challenge of producing vast numbers of precisely engineered elements over a large area. In this study, we demonstrate an all-glass 100 mm diameter metasurface lens (metalens) comprising 18.7 billion nanostructures that operates in the visible spectrum with a fast -number (/1.

View Article and Find Full Text PDF

Achieving high repeatability and efficiency in laser-induced strong shock wave excitation remains a significant technical challenge, as evidenced by the extensive efforts undertaken at large-scale national laboratories to optimize the compression of light element pellets. In this study, we propose and model a novel optical design for generating strong shocks at a tabletop scale. Our approach leverages the spatial and temporal shaping of multiple laser pulses to form concentric laser rings on condensed matter samples.

View Article and Find Full Text PDF