Publications by authors named "M Osofsky"

Chemiresistive graphene sensors are promising for chemical sensing applications due to their simple device structure, high sensitivity, potential for miniaturization, low-cost, and fast response. In this work, we investigate the effect of (1) ZnO nanoparticle functionalization and (2) engineered defects onto graphene sensing channel on device resistance and low frequency electrical noise. The engineered defects of interest include 2D patterns of squares, stars, and circles and 1D patterns of slots parallel and transverse to the applied electric potential.

View Article and Find Full Text PDF

A metamaterial approach is capable of drastically increasing the critical temperature, , of composite metal-dielectric superconductors as demonstrated by the tripling of that was observed in bulk Al-AlO coreshell metamaterials. A theoretical model based on the Maxwell-Garnett approximation provides a microscopic explanation of this effect in terms of electron-electron pairing mediated by a hybrid plasmon-phonon excitation. We report an observation of this excitation in Al-AlO core-shell metamaterials using inelastic neutron scattering.

View Article and Find Full Text PDF

Since its discovery, graphene has held great promise as a two-dimensional (2D) metal with massless carriers and, thus, extremely high-mobility that is due to the character of the band structure that results in the so-called Dirac cone for the ideal, perfectly ordered crystal structure. This promise has led to only limited electronic device applications due to the lack of an energy gap which prevents the formation of conventional device geometries. Thus, several schemes for inducing a semiconductor band gap in graphene have been explored.

View Article and Find Full Text PDF

One of the most important goals of condensed matter physics is materials by design, i.e. the ability to reliably predict and design materials with a set of desired properties.

View Article and Find Full Text PDF

The discovery of low-dimensional metallic systems such as high-mobility metal oxide field-effect transistors, the cuprate superconductors, and conducting oxide interfaces (e.g., LaAlO3/SrTiO3) has stimulated research into the nature of electronic transport in two-dimensional systems given that the seminal theory for transport in disordered metals predicts that the metallic state cannot exist in two dimensions (2D).

View Article and Find Full Text PDF