Publications by authors named "M Orlandini"

Article Synopsis
  • A standardized fully automatic workflow for deep learning-based auto-segmentation in radiotherapy was developed and compared to manual methods for safety and efficiency.
  • Safety evaluations identified and reduced eight failure modes, with several having significant potential impacts on patient safety.
  • The automatic workflow improved efficiency by eliminating mouse clicks, highlighting advancements in both safety and workflow efficiency.
View Article and Find Full Text PDF

In radiotherapy treatment planning, optimization is essential for achieving the most favorable plan by adjusting optimization criteria. This study introduced an innovative approach to automatically fine-tune optimization parameters for volumetric modulated arc therapy prostate planning, ensuring all constraints were met. A knowledge-based planning model was invoked, and the fine-tuning process was applied through an in-house developed script.

View Article and Find Full Text PDF

Nearly every protein in the human body is modified with post-translational modifications (PTMs). PTMs affect proteins on many levels, including their function, interaction, half-life, and localization. Specifically, for histone proteins, PTMs such as lysine methylation and acetylation play essential roles in chromatin dynamic regulations.

View Article and Find Full Text PDF
Article Synopsis
  • * TNBC cells of the mesenchymal stem-like subtype utilize cystine to activate the NRF2 transcription factor, enhancing their defense against oxidative stress through a mechanism independent of glutathione production.
  • * Four upregulated genes linked to this process serve as negative prognostic markers for TNBC, suggesting that targeting the cystine/NRF2/OSGIN1 pathway could lead to new treatment options for this challenging cancer subtype.
View Article and Find Full Text PDF

Post-translational modifications of lysine in histones, as methylation and acetylation, have well established functions in epigenetics and are emerging as important actors in broader biological regulation. Currently, the detection of acetylated lysine (Kac) in water solution as free amino acid or protein residue remains challenging. Acetylated lysine is a neutral amino acid, and the lack of ion-dipole interactions causes the decrease in binding affinity displayed by synthetic molecular receptors with respect to the other lysine modifications.

View Article and Find Full Text PDF