Publications by authors named "M Oncak"

We present the first absorption spectrum of the unperturbed diatomic molecular ion FeH in any wavelength range. The cryogenic X-ray absorption spectrum at the L and L edge is consistent with an iron 3d occupation of 6.24e.

View Article and Find Full Text PDF

Dihydrogen bonding (DHB) is a peculiar type of attractive interaction occurring between a partially positively charged hydrogen atom and a partially negatively charged hydrogen atom. Borazine represents a prototypical molecule exhibiting dihydrogen bonding in both gas phase, as well as in its crystalline form. For borazine assemblies on solid surfaces, a direct observation and characterization of dihydrogen bonding has remained elusive, possibly due to an intricate interplay of substrate-molecule and intermolecular interactions.

View Article and Find Full Text PDF

We show that strong molecular rotation drastically modifies the autodetachment of C_{2}^{-} ions in the lowest quartet electronic state a^{4}Σ_{u}^{+}. In the strong-rotation regime, levels of this state only decay by a process termed "rotationally assisted" autodetachment, whose theoretical description is worked out based on the nonlocal resonance model. For autodetachment linked with the exchange of six rotational quanta, the results reproduce a prominent, hitherto unexplained electron emission signal with a mean decay time near 3 ms, observed on stored C_{2}^{-} ions from a hot ion source.

View Article and Find Full Text PDF

Iron is the most abundant transition metal in the interstellar medium (ISM), and is thought to be involved in a variety of astrochemical processes. Here, we present the infrared multiple photon dissociation (IRMPD) spectra of ArFeH and their deuterated isotopologues in the region of 2240-14 000 cm. The Fe-H overtone stretching mode in ArFeH and ArFeH is observed at 3636 ± 28 cm and 3659 ± 13 cm, respectively.

View Article and Find Full Text PDF

Plasmon-driven chemical conversion is gaining burgeoning interest in the field of heterogeneous catalysis. Herein, we study the reactivity of N-methyl-4-sulfanylbenzamide (NMSB) at nanocavities of gold and silver nanoparticle aggregates under plasmonic excitation to gain understanding of the respective reaction mechanism. NMSB is a secondary amide, which is a frequent binding motive found in peptides and a common coupling product of organic molecules and biomolecules.

View Article and Find Full Text PDF