Background: The human MAGE-3 gene encodes tumor-specific antigens that are recognized by cytotoxic T lymphocytes (CTLs) and expressed in a high percentage of various malignant tumors. Of the five MAGE-3-derived CTL epitopes identified to date, two nonapeptides (TFPDLESEF and IMPKAGLLI, designated MAGE-3.A24a and MAGE-3.
View Article and Find Full Text PDFBackground: Association between certain human leukocyte antigen (HLA) types such as HLA-A1 and -A3 and squamous cell carcinoma of the head and neck (SCCHN) has been demonstrated in the Caucasian population. HLA typings in these studies were performed by conventional serological methods. However, recent comparison studies between serological and molecular typings have revealed that the former are often inaccurate.
View Article and Find Full Text PDFFive MAGE-3-derived peptides carrying an HLA-A24-binding motif were synthesized. Binding capacity of these peptides was analyzed by an HLA-class-I stabilization assay. Two of the 5 peptides bound to HLA-A*2402 molecule with high affinity, and 3 peptides with low affinity.
View Article and Find Full Text PDFRecent advances in knowledge of crystal structures of MHC class II molecules has advanced understanding of the molecular basis for interactions between peptides and HLA class II molecules. Polymorphism of HLA class II molecules influences structures of peptides bound to HLA class II molecules. To better understand mechanisms related to particular HLA class II alleles and autoimmune diseases, it is important to identify self-peptides presented by disease-susceptible HLA class II molecules and triggering disease-causative autoreactive T cells.
View Article and Find Full Text PDFIt is well known that individuals positive for particular HLA-class II alleles show high risks for the development of Takayasu arteritis and other diseases caused by immunological disorders such as autoimmune diseases and allergies. HLA class II molecules present antigenic peptides to CD4+ T cells. Their extensive polymorphism affects the structures of peptides bound to HLA class II molecules to create individual differences in immune responses to antigenic peptides.
View Article and Find Full Text PDF