Understanding the structure of nanoparticles under (electro)catalytic operating conditions is crucial for uncovering structure-property relationships. By combining X-ray total scattering and pair distribution function analysis with small-angle X-ray scattering (SAXS), we obtained comprehensive structural information on ultrasmall (<3 nm) iridium nanoparticles and tracked their changes during oxygen evolution reaction (OER) in acid. When subjected to electrochemical conditions at reducing potentials, the metallic Ir nanoparticles are found to be decahedral.
View Article and Find Full Text PDFAdvanced in situ analyses are indispensable for comprehending the catalyst aging mechanisms of Pt-based PEM fuel cell cathode materials, particularly during accelerated stress tests (ASTs). In this study, a combination of in situ small-angle and wide-angle X-ray scattering (SAXS & WAXS) techniques were employed to establish correlations between structural parameters (crystal phase, quantity, and size) of a highly active skeleton-PtCo (sk-PtCo) catalyst and their degradation cycles within the potential range of the start-up/shut-down (SUSD) conditions. Despite the complex case of the sk-PtCo catalyst comprising two distinct fcc alloy phases, our complementary techniques enabled in situ monitoring of structural changes in each crystal phase in detail.
View Article and Find Full Text PDFNanoporous gold (NPG) is characterized by a bicontinuous network of nanometer-sized metallic struts and interconnected pores formed spontaneously by oxidative dissolution of the less noble element from gold alloys. The resulting material exhibits decent catalytic activity for low-temperature, aerobic total as well as partial oxidation reactions, the oxidative coupling of methanol to methyl formate being the prototypical example. This review not only provides a critical discussion of ways to tune the morphology and composition of this material and its implication for catalysis and electrocatalysis, but will also exemplarily review the current mechanistic understanding of the partial oxidation of methanol using information from quantum chemical studies, model studies on single-crystal surfaces, gas phase catalysis, aerobic liquid phase oxidation, and electrocatalysis.
View Article and Find Full Text PDFNumerous synthetic techniques for the fabrication of porous metal electrodes were developed in recent decades. A very promising and facile route is the 3D printing of structures, which can be designed directly on the computer first. However, the current techniques allow structures to be printed with a resolution down to 20 µm, which is still quite rough regarding tuning the pore distribution and diameter of electrode materials for potential applications.
View Article and Find Full Text PDF