Publications by authors named "M O Wiedorn"

Serial crystallography at conventional synchrotron light sources (SSX) offers the possibility to routinely collect data at room temperature using micrometre-sized crystals of biological macromolecules. However, SSX data collection is not yet as routine and currently takes significantly longer than the standard rotation series cryo-crystallography. Thus, its use for high-throughput approaches, such as fragment-based drug screening, where the possibility to measure at physio-logical temperatures would be a great benefit, is impaired.

View Article and Find Full Text PDF
Article Synopsis
  • The European XFEL and LCLS II are powerful X-ray sources that can collect detailed data from crystals at rapid megahertz rates.
  • Researchers used these X-ray pulses to gather two complete datasets from a single lysozyme crystal in less than 1 microsecond, achieving high-resolution structures.
  • The comparison of these structures showed no radiation damage or significant changes, indicating that this multi-hit SFX technique can effectively capture fast structural changes in crystals.
View Article and Find Full Text PDF

Serial crystallography of membrane proteins often employs high-viscosity injectors (HVIs) to deliver micrometre-sized crystals to the X-ray beam. Typically, the carrier medium is a lipidic cubic phase (LCP) media, which can also be used to nucleate and grow the crystals. However, despite the fact that the LCP is widely used with HVIs, the potential impact of the injection process on the LCP structure has not been reported and hence is not yet well understood.

View Article and Find Full Text PDF

Serial femtosecond crystallography (SFX) is a powerful technique that exploits X-ray free-electron lasers to determine the structure of macro-molecules at room temperature. Despite the impressive exposition of structural details with this novel crystallographic approach, the methods currently available to introduce crystals into the path of the X-ray beam sometimes exhibit serious drawbacks. Samples requiring liquid injection of crystal slurries consume large quantities of crystals (at times up to a gram of protein per data set), may not be compatible with vacuum configurations on beamlines or provide a high background due to additional sheathing liquids present during the injection.

View Article and Find Full Text PDF

Automated, pulsed liquid-phase sample delivery has the potential to greatly improve the efficiency of both sample and photon use at pulsed X-ray facilities. In this work, an automated drop on demand (DOD) system that accelerates sample exchange for serial femtosecond crystallography (SFX) is demonstrated. Four different protein crystal slurries were tested, and this technique is further improved here with an automatic sample-cycling system whose effectiveness was verified by the indexing results.

View Article and Find Full Text PDF