Publications by authors named "M O Huising"

Glucokinase (GK) catalyses the key regulatory step in glucose-stimulated insulin secretion. Correspondingly, hetero- and homozygous mutations in human cause maturity-onset diabetes of the young (GCK-MODY) and permanent neonatal diabetes (PNDM), respectively. To explore the possible utility of glucokinase activators (GKA) and of glucagon-like receptor-1 (GLP-1) agonists in these diseases, we have developed a novel hypomorphic allele in mice encoding an aberrantly spliced mRNA deleted for exons 2 and 3.

View Article and Find Full Text PDF
Article Synopsis
  • Nonmuscle myosin II (NMII) is crucial for various cellular activities, including cell division and muscle contraction, but measuring the forces it generates in live cells has been challenging.
  • A new FRET-based tension sensor has been developed to directly measure the forces associated with NMII along the actin network, using advanced imaging techniques like FLIM-FRET.
  • The findings reveal that the forces produced by NMII isoform B (NMIIB) can vary significantly in different locations and times within the cell, suggesting this sensor could help understand the dynamics of cytoskeletal contractility in various cellular processes.
View Article and Find Full Text PDF

Pancreatic alpha cell activity and glucagon secretion lower as glucose levels increase. While part of the decrease is regulated by glucose itself, paracrine signaling by their neighboring beta and delta cells also plays an important role. Somatostatin from delta cells is an important local inhibitor of alpha cells at high glucose.

View Article and Find Full Text PDF

While pancreatic β and α cells are considered the main drivers of blood glucose homeostasis through insulin and glucagon secretion, the contribution of δ cells and somatostatin (SST) secretion to glucose homeostasis remains unresolved. Here we provide a quantitative assessment of the physiological contribution of δ cells to the glycaemic set point in mice. Employing three orthogonal mouse models to remove SST signalling within the pancreas or transplanted islets, we demonstrate that ablating δ cells or SST leads to a sustained decrease in the glycaemic set point.

View Article and Find Full Text PDF