X-ray computed tomography coronary angiography (CTCA) is a current method for diagnosing ischemic heart disease. Although this method has a high specificity and a negative predictive value in diagnosing coronary obstructions, there are limitations in determining the hemodynamic significance of the stenosis. Extensive use of noninvasive methods for evaluation of coronary hemodynamics, specifically evaluation of the fractional flow reserve (FFR) is limited due to its high cost and risks of complications.
View Article and Find Full Text PDFTo evaluate the myocardial flow reserve (MFR) and myocardial blood flow (MBF) parameters in patients with heart failure with preserved ejection fraction (HFpEF) and to assess their relationship with the severity of HF and the levels of soluble ST2 (sST2). A total of 59 consecutive patients (median age of 65.0 (58.
View Article and Find Full Text PDFBackground: To assess single-photon emission computed tomography cadmium-zinc-telluride (SPECT CZT)-derived myocardial blood flow (MBF) flow reserve (MFR) and flow difference (FD) in patients with acute myocardial infarction (AMI) and to compare this data with serum cardiac troponin and cardiac magnetic resonance (CMR) findings.
Methods: A total of 31 patients with AMI underwent invasive coronary angiography (ICA), serial high-sensitivity serum cardiac troponin I (cTnI) measurement, and CZT SPECT with visual and quantitative (MBF, MFR, and FD) perfusion parameters, and contrast-enhanced CMR. All patients with AMI were divided into two groups: (1) with non-obstructive coronary arteries (MINOCA), = 10; (2) with obstructive coronary artery disease (MICAD), = 21.
Cardiac PET-derived measurements of myocardial blood flow (MBF) and myocardial flow reserve (MFR) are proven robust indexes of the severity of coronary artery disease (CAD). They facilitate the diagnosis of diffuse epicardial and microvascular disease and are also of prognostic significance. However, low availability and high cost have limited their wide clinical implementation.
View Article and Find Full Text PDFCardiac resynchronization therapy (CRT) is one of the methods of treating patients with chronic heart failure, which can reduce the mortality rate of this group. Scintigraphic assessment of sympathetic myocardial innervation allows us to evaluate the heart failure prognosis and the effectiveness of interventional treatment. The method is based on use of the radiopharmaceutical 123 I-methiodiobenzylguanidine (123 I-MIBG), which is a structural analogue of norepinephrine and is able to selectively accumulate in the sympathetic nerve endings.
View Article and Find Full Text PDF