Background: Ovarian follicular fluid (FF) is a dynamic environment that changes with the seasons, affecting follicle development, ovulation, and oocyte quality. Cells in the follicles release tiny particles called extracellular vesicles (EVs) containing vital regulatory molecules, such as microRNAs (miRNAs). These miRNAs are pivotal in facilitating communication within the follicles through diverse signaling and information transfer forms.
View Article and Find Full Text PDFHay wastage when feeding round bales due to contamination, deterioration, and animal refusal can accrue large financial losses for farmers. The present study investigated the efficiency of the conventional Tombstone-style feeder system compared to the Hay Saver feeder system to reduce hay wastage in feeding round hay bales. Mares were distributed equally into two groups, Tombstone and Hay Saver, and fed six bales per group over 48 days.
View Article and Find Full Text PDFGrowth patterns and associated endocrine profiles were compared between dominant anovulatory (ADF) and ovulatory follicles (OvF) developing from different waves within and between menstrual cycles in women. Follicular mapping profiles of 49 healthy women of reproductive age and blood samples were obtained every 1-3 days. Sixty-three dominant follicles were classified into wave 1 (W1ADF; n = 8) and wave 2 (W2ADF; n = 6) anovulatory follicles and wave 2 (W2OvF; n = 33) and wave 3 (W3OvF; n = 16) ovulatory follicles.
View Article and Find Full Text PDFInnumerable similarities in reproductive cyclicity and hormonal alterations highlight the considerable utility of the mare to study aspects of follicular dynamics and reproductive function in view of the largely constricted, human research subjects. The bi-directional communication between the growing oocyte and the surrounding somatic cells embodies the hallmark of mammalian follicular development, partially mediated by extracellular vesicles (EVs) encapsulated with microRNAs (miRNAs) and present in the follicular fluid (FF). Here, we aimed to decipher the dynamics of the miRNAs in EVs from equine FF aspirated in vivo during different stages of follicular development, namely, predeviation (PreDev; 18-20 mm), deviation (Dev; 22-25 mm), postdeviation (PostDev; 26-29 mm), preovulatory (PreOV; 30-35 mm), and impending ovulation (IMP; ∼40 mm).
View Article and Find Full Text PDFUnderstanding the transition from quiescent primordial follicles to activated primary follicles is vital for characterizing ovarian folliculogenesis and improving assisted reproductive techniques. To date, no study has investigated preantral follicle crowding in the ovaries of livestock or characterized these crowds according to follicular morphology and ovarian location (portions and regions) in any species. Therefore, the present study aimed to assess the crowding (clustering and neighborhood) patterns of preantral follicles in the equine ovary according to mare age, follicular morphology and developmental stage, and spatial location in the ovary.
View Article and Find Full Text PDF