Materials (Basel)
July 2023
In situ fenestration of endovascular stent-grafts has become a mainstream bailout technique to treat complex emergent aneurysms while maintaining native anatomical visceral and aortic arch blood supplies. Fabric tearing from creating the in situ fenestration using balloon angioplasty may extend beyond the intended diameter over time. Further tearing may result from the physiologic pulsatile motion at the branching site.
View Article and Find Full Text PDFPurpose: To evaluate the response of various stent-grafts after laser fenestration and dilation with noncompliant balloons to determine the optimal therapeutic combination for this treatment technique.
Materials And Methods: Five aortic stent-grafts were evaluated ex vivo: the Bolton RelayPlus, Jotec E-vita Thoracic 3G, Medtronic Valiant, Cook Zenith Alpha, and Vascutek Anaconda. Small holes were created using an excimer laser with the grafts submerged in saline.
The damage caused to the fabric of endovascular stent-grafts most often occurs at the contact zones between the fabrics where they are attached to the apices of Z-shaped stents as a result of normal physiologic pulsatile movement within angulated vessels in vivo. Although design improvements were made over the years, the risks were not fully eliminated even with the newer M-shaped stent reconfiguration. In this study, we proposed to create and manufacture a novel fabric for stent-grafts with specifically designed reinforced zones to enhance resistance to fabric abrasion.
View Article and Find Full Text PDF