How does the composition of a collection of individuals affect its outcome in competition with other collections of individuals? Assuming that individuals can be different, we develop a model to interpolate between individual-level interactions and collective-level consequences. Rooted in theoretical mathematics, the model is not constrained to any specific context. Potential applications include research, education, sports, politics, ecology, agriculture, algorithms and finance.
View Article and Find Full Text PDFHydrogel copolymers based on ,-dimethyl acrylamide (DMA) and acrylic acid (AAc) were synthesized using a solution polymerization technique with different monomer ratios and ammonium persulfate as an initiator. This paper investigates the thermal stability, physical and chemical properties of the hydrogel copolymer. Testing includes Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and elemental analysis (CHNS).
View Article and Find Full Text PDFWhy, contrary to theoretical predictions, do marine microbe communities harbor tremendous phenotypic heterogeneity? How can so many marine microbe species competing in the same niche coexist? We discovered a unifying explanation for both phenomena by investigating a non-cooperative game that interpolates between individual-level competitions and species-level outcomes. We identified all equilibrium strategies of the game. These strategies represent the probability distribution of competitive abilities (e.
View Article and Find Full Text PDF