Publications by authors named "M Nur Uygun"

In this study, gold nanoparticles (AuNPs) were synthesized and combined with fullerene, resulting in the formation of nanocomposite structures. The structures were then characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques. The nanostructures were functionalized with MPA and employed for covalent binding of CA125 antibody, whereby the antibody-bound nanocomposite structure was utilized for modification of the surface of the SPE.

View Article and Find Full Text PDF

In this study, a simple, specific and sensitive immunosensor for CEA detection was prepared based on BN nanosheets. Lewis acid-base interaction was sufficient for the immobilization of anti-CEA used as an antibody on the electrode surface without an activation agent. This immunosensor could be used for CEA determination without the need to use any label or secondary antibody.

View Article and Find Full Text PDF

Sound waves generate acoustic resonance energy that penetrates deeply and safely into body areas normal mechanical vibrations cannot reach. The sonic balance pad utilizes these sound waves to create an optimal musculoskeletal response. The purpose of this study was to investigate the effects of a 4-week ankle stabilization exercise program using a sonic balance pad on proprioceptive sense and balance ability in individuals with ankle instability.

View Article and Find Full Text PDF

In this presented work, a new micromotor was prepared for urokinase immobilization. A covalent bond was constructed between the urokinase and the carboxyl groups of the graphene oxide, which is located at the outer layer of micromotors by EDC/NHS chemistry. The inner nickel layer gave magnetic properties to the micromotors and enables them to be separated from the reaction medium with the help of a simple magnet.

View Article and Find Full Text PDF

Serum proteins can generally be considered a good source for the illness' indication and are precious resources to detect diseases such as inflammation, cancer, diabetes, malnutrition, cardiovascular diseases, Alzheimer's, other autoimmune diseases, and infections. However, one of the biggest difficulties for proteomic studies is that the majority of serum protein mass consists of only a few proteins. Albumin and Immunoglobulin (IgG) constitute 80% of total serum protein.

View Article and Find Full Text PDF