Publications by authors named "M Nouri-Goushki"

The purpose of this study is to investigate the impact of a sudden shock from the COVID-19 epidemic on the behavioral bias of investors in the stock market of Iran as a developing country. The study also examines whether the government response to the COVID-19 pandemic can reduce investor herding behavior. We have used the Cross-sectional absolute deviation (CSAD) to measure securities dispersion from market returns.

View Article and Find Full Text PDF

Physical patterns represent potential surface cues for promoting osteogenic differentiation of stem cells and improving osseointegration of orthopedic implants. Understanding the early cell-surface interactions and their effects on late cellular functions is essential for a rational design of such topographies, yet still elusive. In this work, fluidic force microscopy (FluidFM) and atomic force microscopy (AFM) combined with optical and electron microscopy are used to quantitatively investigate the interaction of preosteoblasts with 3D-printed patterns after 4 and 24 h of culture.

View Article and Find Full Text PDF

Modulation of the immune response following the implantation of biomaterials can have beneficial effects on bone regeneration. This involves complex interactions between the inflammatory and osteogenic cells. Therefore, the study of cell-cell interactions using direct co-culture models integrated with biomaterials is of great interest.

View Article and Find Full Text PDF

We developed a localized single-cell electroporation chip to deliver exogenous biomolecules with high efficiency while maintaining high cell viability. In our microfluidic device, the cells are trapped in a microtrap array by flow, after which target molecules are supplied to the device and electrotransferred to the cells under electric pulses. The system provides the ability to monitor the electrotransfer of exogenous biomolecules in real time.

View Article and Find Full Text PDF

The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with the surface and continues until the complete integration of the device in its immediate environment. There is, however, limited quantitative information available regarding the relationships between the different stages of such cascade(s) and how the design of surface topography influences them. We, therefore, used direct laser writing to 3D-print submicron pillars with precisely controlled dimensions and spatial arrangements to perform a systematic study of such relationships.

View Article and Find Full Text PDF