The laminar cellular and circuit mechanisms by which the anterior cingulate cortex (ACC) exerts flexible control of motor and affective information for goal-directed behavior have not been elucidated. Using multimodal tract-tracing, in vitro patch-clamp recording and computational approaches in rhesus monkeys (M. mulatta), we provide evidence that specialized motor and affective network dynamics can be conferred by layer-specific biophysical and structural properties of ACC pyramidal neurons targeting two key downstream structures -the dorsal premotor cortex (PMd) and the amygdala (AMY).
View Article and Find Full Text PDFAim: The aim of this study was to discuss and illustrate the role age-conditional probability has in communicating risk of developing ocular and ocular adnexal malignancies.
Methods: Cross-sectional incidence for retinoblastoma, uveal melanoma, conjunctival melanoma, and lacrimal gland carcinomas from 2000 to 2017 were obtained from the Surveillance, Epidemiology and End Results (SEER) database. Incidence rates were age-adjusted to the 2000 United States population.
Purpose: To investigate how light stimulus conditions of varying spatial sizes affect components of the flash and long-flash electroretinogram (ERG) in normal subjects.
Method: Three stimulus conditions were generated by a Ganzfeld stimulator: a white flash on white background (WoW), a red flash on a blue background (RoB) and an L+M-cone isolating on-off (long flash) stimulus (Cone Iso). ERGs were recorded from six subjects (5 M, 1 F) with DTL electrodes to full-field (FF), 70°, 60°, 50°, 40°, 30° and 20° diameter circular stimuli.
We report the realization of coherent electro-optical detection of nanosecond terahertz (THz) pulses from an optical parametric oscillator, which is pumped by a Q-switched nanosecond Nd:YVO4 laser at 1064 nm and emits at approximately 1.5 THz. The beam profile and wavefront of the THz beam at focus are electro-optically characterized toward the realization of a real-time THz camera.
View Article and Find Full Text PDFWe report the realization of a singly resonant optical parametric oscillator (SRO) that is designed to provide narrow-bandwidth, continuously tunable radiation at a wavelength of 1163 nm for optical cooling of osmium ions. The SRO is based on periodically poled, magnesium-oxide-doped lithium niobate and pumped at 532 nm. The output coupling of the resonant idler wave is adjusted to yield up to 400 mW of 1163 nm radiation, with a bandwidth of a few megahertz.
View Article and Find Full Text PDF