Vinyl triflimides are a new compound class with unknown reactivity. A computational analysis identified homolytic cleavage of the N-Tf bond induced by triplet-triplet energy transfer (EnT) as a highly interesting reaction type that might be accessible. A combination of experimental and mechanistic work verified this hypothesis and proved the generated radicals to be amenable to radical-radical coupling.
View Article and Find Full Text PDFA rare reductive coupling of nitro compounds with organohalides has been realized. The reaction is initiated by a partial reduction of the nitro group to a nitrenoid intermediate. Therefore, not only aromatic but also aliphatic nitro compounds are efficiently transformed into monoalkylated amines, with organohalides as the alkylating agent.
View Article and Find Full Text PDFA new concept for selectivity control in carbocation-driven reactions has been identified which allows for the chemo-, regio-, and stereoselective addition of nucleophiles to alkynes-assisted vinyl cation formation-enabled by a Li -based supramolecular framework. Mechanistic analysis of a model complex (Li NTf ⋅3 H O) confirms that solely the formation of a complex between the incoming nucleophile and the transition state of the alkyne protonation is responsible for the resulting selective N addition to the vinyl cation. Into the bargain, a general, operationally simple synthetic procedure to previously inaccessible vinyl triflimides is provided.
View Article and Find Full Text PDFReady for the open waters? Recent developments have fundamentally changed our knowledge of vinyl cation reactivity. The myth that they are too reactive for a predictable reaction design has been debunked, and the applicability of their most distinguished feature, namely their carbene-like reactivity, has taken a major leap forwards. Vinyl cations have thus matured into distinct reactive intermediates with a bright future ahead.
View Article and Find Full Text PDFOpposing activities of Notch and Wnt signaling regulate mucosal barrier homeostasis and differentiation of intestinal epithelial cells. Specifically, Wnt activity is essential for differentiation of secretory cells including Wnt3-producing Paneth cells, whereas Notch signaling strongly promotes generation of absorptive cells. Loss of caspase-8 in intestinal epithelium (casp8) is associated with fulminant epithelial necroptosis, severe Paneth cell death, secondary intestinal inflammation, and an increase in Notch activity.
View Article and Find Full Text PDF