Reproductive cycle of seasonally breeding fish is synchronized with changes of photoperiod and temperature in environment. We hypothesize that arginine vasotocin (AVT) and isotocin (IT) are involved in timing and synchronization of seasonal reproductive activity in the round goby (Neogobius melanostomus). To verify this hypothesis, we examined the annual profiles of brain AVT and IT in round goby males and females in relation to their reproductive cycle.
View Article and Find Full Text PDFFish may respond to different social situations with changes in both physiology and behaviour. A unique feature of fish is that social interactions between males and females strongly affect the sexual characteristics of individuals. Here we provide the first insight into the endocrine background of two phenomena that occur in mono-sex groups of the black molly (Poecilia sphenops): masculinization in females and same-sex sexual behaviour, manifested by gonopodial displays towards same-sex tank mates and copulation attempts in males.
View Article and Find Full Text PDFThe study was designed to develop a new procedure for perfusion of brain and pituitary explants collected from three-spined stickleback (Gasterosteus aculeatus) and round goby (Neogobius melanostomus). The procedure was elaborated for studies of arginine vasotocin (AVT) and isotocin (IT) release from explants of both species. AVT and IT, analogs of mammalian vasopressin and oxytocin, are neurohormones produced in hypothalamus and released in neurohypophysis of Teleostei.
View Article and Find Full Text PDFIn this study, melatonin (MEL) and thyroxine (T(4)) concentrations were measured during larval and postlarval development of gilthead sea bream Sparus auratus Hormones were measured in whole bodies of larvae or the head and trunk of postlarvae after 67 days of exposure to constant light, 24L:0D, constant darkness, 0L:24D or 12L:12D and in the plasma of 6 month juveniles kept under the 12L:12D, 0L:24D and 24L:0D regimes. High MEL concentrations in larvae suggested a distinct role of MEL in early organogenesis and development of S. auratus.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
September 2007
There is growing evidence that ubiquitous environmental contaminants may interfere with vertebrate endocrine systems. The selected endocrine biomarkers are used to indicate the condition of free-ranging populations of wildlife, including avian species. The aim of this study was to determine the impact of environment quality on serum thyroxine (T4) and melatonin (Mel) in white stork nestlings (Ciconia ciconia) living in different locations: small villages in natural areas surrounded by forests and crop fields, near the city and near the copper smelter.
View Article and Find Full Text PDF