The spatial organization of chromatin within the eukaryotic nucleus is critical in regulating key cellular functions, such as gene expression, and its disruption can lead to disease. Advances in experimental techniques, such as Hi-C and microscopy, have significantly enhanced our understanding of chromatin's intricate and dynamic architecture, revealing complex patterns of interaction at multiple scales. Along with experimental methods, physics-based computational models, including polymer phase separation and loop-extrusion mechanisms, have been developed to explain chromatin structure in a principled manner.
View Article and Find Full Text PDFThe dynamic three-dimensional (3D) organization of the human genome (the "4D Nucleome") is closely linked to genome function. Here, we integrate a wide variety of genomic data generated by the 4D Nucleome Project to provide a detailed view of human 3D genome organization in widely used embryonic stem cells (H1-hESCs) and immortalized fibroblasts (HFFc6). We provide extensive benchmarking of 3D genome mapping assays and integrate these diverse datasets to annotate spatial genomic features across scales.
View Article and Find Full Text PDFHere, we employ polymer physics models of chromatin to investigate the 3D folding of a 2 Mb wide genomic region encompassing the human gene, a crucial DNA locus involved in key cellular functions. Through extensive Molecular Dynamics simulations, we reconstruct in silico the ensemble of single-molecule 3D structures, which we benchmark against recent in situ Hi-C 2.0 data.
View Article and Find Full Text PDFHere, we employ polymer physics models of chromatin to investigate the 3D folding of a 2Mb wide genomic region encompassing the human gene, a crucial DNA locus involved in key cellular functions. Through extensive Molecular Dynamics simulations, we reconstruct in-silico the ensemble of single-molecule 3D structures, which we benchmark against recent in-situ Hi-C 2.0 data.
View Article and Find Full Text PDFMidbrain dopamine neurons (DNs) respond to a first exposure to addictive drugs and play key roles in chronic drug usage. As the synaptic and transcriptional changes that follow an acute cocaine exposure are mostly resolved within a few days, the molecular changes that encode the long-term cellular memory of the exposure within DNs remain unknown. To investigate whether a single cocaine exposure induces long-term changes in the 3D genome structure of DNs, we applied Genome Architecture Mapping and single nucleus transcriptomic analyses in the mouse midbrain.
View Article and Find Full Text PDF