Publications by authors named "M Neteler"

BackgroundTick-borne encephalitis (TBE) is a disease which can lead to severe neurological symptoms, caused by the TBE virus (TBEV). The natural transmission cycle occurs in foci and involves ticks as vectors and several key hosts that act as reservoirs and amplifiers of the infection spread. Recently, the incidence of TBE in Europe has been rising in both endemic and new regions.

View Article and Find Full Text PDF

Tropical fruit flies are considered among the most economically important invasive species detected in temperate areas of the United States and the European Union. Detections often trigger quarantine and eradication programs that are conducted without a holistic understanding of the threat posed. Weather-driven physiologically-based demographic models are used to estimate the geographic range, relative abundance, and threat posed by four tropical tephritid fruit flies (Mediterranean fruit fly, melon fly, oriental fruit fly, and Mexican fruit fly) in North and Central America, and the European-Mediterranean region under extant and climate change weather (RCP8.

View Article and Find Full Text PDF
Article Synopsis
  • Tick-borne diseases in Europe, caused by various pathogens, have been increasing, highlighting the need for better understanding of their spread.
  • This study modeled nymph tick density and infection rates in five European countries, analyzing how land use and climatic factors affect tick populations.
  • Findings reveal that while tick abundance is influenced by climate, the density of infected ticks varies based on the specific pathogen and land usage, emphasizing the importance of ecological studies on tick-host interactions.
View Article and Find Full Text PDF

The availability of more than thirty years of historical satellite data is a valuable source which could be used as an alternative to the sparse in-situ data. We developed a new homogenised time series of daily day time Lake Surface Water Temperature (LSWT) over the last thirty years (1986-2015) at a spatial resolution of 1km from thirteen polar orbiting satellites. The new homogenisation procedure implemented in this study corrects for the different acquisition times of the satellites standardizing the derived LSWT to 12:00 UTC.

View Article and Find Full Text PDF

Availability of remotely sensed multi-spectral images since the 1980's, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites.

View Article and Find Full Text PDF