Interconversion of the oxidation states of uranium enables separations and reactivity schemes involving this element and contributes to technologies for recycling of spent nuclear fuels. The redox behaviors of uranium species impact these processes, but use of electrochemical methods to drive reactions of molecular uranium complexes and to obtain molecular insights into the outcomes of electrode-driven reactions has received far less attention than it deserves. Here, we show that electro-reduction of the uranyl ion (UO) can be used to promote stepwise functionalization of the typically unreactive oxo groups with exogenous triphenylborane (BPh) serving as a moderate electrophile, avoiding the conventional requirement for a chemical reductant.
View Article and Find Full Text PDFUnderstanding how modification of molecular structures changes the thermochemistry of H atom uptake can provide design criteria for the formation of highly active catalysts for reductive transformations. Herein, we describe the effect of doping an atomically precise polyoxotungstate with vanadium on proton-coupled electron transfer (PCET) reactivity. The Lindqvist-type polyoxotungstate [WO] displays reversible redox chemistry, which was found to be unchanged in the presence of acid, indicating an inability to couple reduction with protonation.
View Article and Find Full Text PDFWhile iron-catalyzed C(sp)-C(sp) cross-couplings have been widely studied and developed in the last decade, alkyl-alkyl cross-coupling systems with iron remain underdeveloped despite the importance of C(sp)-C(sp) bonds in organic synthesis. A major challenge to the development of these reactions is the current lack of fundamental insight into ligand effects and organoiron intermediates that enable effective alkyl-alkyl couplings. The current study addresses this longstanding limitation using a combination of Fe Mössbauer spectroscopy, SC-XRD (single-crystal X-ray diffraction) and reactivity studies of alkyl-alkyl coupling with iron-Xantphos to define the in situ formed iron-Xantphos intermediates in catalysis.
View Article and Find Full Text PDFDirecting groups guide substitution patterns in organic synthetic schemes, but little is known about pathways to control reactivity patterns, such as regioselectivity, in complex inorganic systems such as bioinorganic cofactors or extended surfaces. Interadsorbate effects are known to encode surface reactivity patterns in inorganic materials, modulating the location and binding strength of ligands. However, owing to limited experimental resolution into complex inorganic structures, there is little opportunity to resolve these effects on the atomic scale.
View Article and Find Full Text PDFThe scission and homologation of CO is a fundamental process in the Fischer-Tropsch reaction. However, given the heterogeneous nature of the catalyst and forcing reaction conditions, it is difficult to determine the intermediates of this reaction. Here we report detailed mechanistic insight into the scission/homologation of CO by two-coordinate iron terphenyl complexes.
View Article and Find Full Text PDF