Phthalocyanines are artificial macrocycles that can harbour a central metal atom with four symmetric coordinations. Similar to metal-porphyrins, metal-phthalocyanines (M-PCs) may bind small molecules, especially diatomic gases such as NO and O. Furthermore, various chemical chains can be grafted at the periphery of the M-PC macrocycle, which can change its properties, including the interaction with diatomic gases.
View Article and Find Full Text PDFSome classes of bacteria within phyla possess protein sensors identified as homologous to the heme domain of soluble guanylate cyclase, the mammalian NO-receptor. Named H-NOX domain (Heme-Nitric Oxide or OXygen-binding), their heme binds nitric oxide (NO) and O for some of them. The signaling pathways where these proteins act as NO or O sensors appear various and are fully established for only some species.
View Article and Find Full Text PDFMapping red blood cells (RBCs) flow and oxygenation is of key importance for analyzing brain and tissue physiology. Current microscopy methods are limited either in sensitivity or in spatio-temporal resolution. In this work, we introduce a novel approach based on label-free third-order sum-frequency generation (TSFG) and third-harmonic generation (THG) contrasts.
View Article and Find Full Text PDFHeme-Nitric oxide and Oxygen binding protein domains (H-NOX) are found in signaling pathways of both prokaryotes and eukaryotes and share sequence homology with soluble guanylate cyclase, the mammalian NO receptor. In bacteria, H-NOX is associated with kinase or methyl accepting chemotaxis domains. In the O-sensor of the strict anaerobe Caldanaerobacter tengcongensis (Ct H-NOX) the heme appears highly distorted after O binding, but the role of heme distortion in allosteric transitions was not yet evidenced.
View Article and Find Full Text PDF