In this paper, we present the development and the validation of a novel index of nociception/anti-nociception (N/AN) based on skin impedance measurement in time and frequency domain with our prototype AnspecPro device. The primary objective of the study was to compare the Anspec-PRO device with two other commercial devices (Medasense, Medstorm). This comparison was designed to be conducted under the same conditions for the three devices.
View Article and Find Full Text PDFObjective: The problem of reliable and widely accepted measures of pain is still open. It follows the objective of this work as pain estimation through post-surgical trauma modeling and classification, to increase the needed reliability compared to measurements only.
Methods: This article proposes (i) a recursive identification method to obtain the frequency response and parameterization using fractional-order impedance models (FOIM), and (ii) deep learning with convolutional neural networks (CNN) classification algorithms using time-frequency data and spectrograms.
The paper aims to revive the interest in bioimpedance analysis for pain studies in communicating and non-communicating (anesthetized) individuals for monitoring purpose. The plea for exploitation of full potential offered by the complex (bio)impedance measurement is emphasized through theoretical and experimental analysis. A non-invasive, low-cost reliable sensor to measure skin impedance is designed with off-the-shelf components.
View Article and Find Full Text PDFAlthough the measurement of dielectric properties of the skin is a long-known tool for assessing the changes caused by nociception, the frequency modulated response has not been considered yet. However, for a rigorous characterization of the biological tissue during noxious stimulation, the bioimpedance needs to be analyzed over time as well as over frequency. The 3-dimensional analysis of nociception, including bioimpedance, time, and frequency changes, is provided by ANSPEC-PRO device.
View Article and Find Full Text PDFBackground: This study investigated the clinical performance of a model-based, patient-individualized closed-loop (CL) control system for propofol administration using the bispectral index (BIS) as a controlled variable during the induction and maintenance of anesthesia with propofol and remifentanil and studied the influence of the targeted effect-site concentration of remifentanil (CeREMI) on its clinical performance.
Methods: In 163 patients, propofol was administered using a CL system (BIS target [BISTARGET] between 40 and 50). Initial CeREMI targets between 2 and 7.