Publications by authors named "M Nasri Sissini"

Article Synopsis
  • * They act as foundation species, creating "facilitation cascades" that help mitigate physical stress, reduce predator impacts, and improve resource availability for other species, which leads to complex and supportive community structures.
  • * Key research gaps include understanding how rhodoliths function as facilitators, the stability of these interactions over time, how species dynamics change in different environments, and their potential as climate refuges, which is essential for shaping effective marine conservation policies.
View Article and Find Full Text PDF

Global marine conservation remains fractured by an imbalance in research efforts and policy actions, limiting progression towards sustainability. Rhodolith beds represent a prime example, as they have ecological importance on a global scale, provide a wealth of ecosystem functions and services, including biodiversity provision and potential climate change mitigation, but remain disproportionately understudied, compared to other coastal ecosystems (tropical coral reefs, kelp forests, mangroves, seagrasses). Although rhodolith beds have gained some recognition, as important and sensitive habitats at national/regional levels during the last decade, there is still a notable lack of information and, consequently, specific conservation efforts.

View Article and Find Full Text PDF

Given the ecological and biogeochemical importance of rhodolith beds, it is necessary to investigate how future environmental conditions will affect these organisms. We investigated the impacts of increased nutrient concentrations, acidification, and marine heatwaves on the performance of the rhodolith-forming species Lithothamnion crispatum in a short-term experiment, including the recovery of individuals after stressor removal. Furthermore, we developed an ecological niche model to establish which environmental conditions determine its current distribution along the Brazilian coast and to project responses to future climate scenarios.

View Article and Find Full Text PDF

Marine climate change mitigation initiatives have recently attracted a great deal of interest in the role of natural carbon sinks, particularly on coastal systems. Brown seaweeds of the genus Sargassum are the largest canopy-forming algae in tropical and subtropical environments, with a wide global distribution on rocky reefs and as floating stands. Because these algae present high amounts of biomass, we suggest their contribution is relevant for global carbon stocks and consequently for mitigating climate change as CO remover.

View Article and Find Full Text PDF