Publications by authors named "M Nakagomi"

Ceramide 1-phosphate (C1P) is a lipid mediator that specifically binds and activates cytosolic phospholipase Aα (cPLAα). To elucidate the structure-activity relationship of the affinity of C1P for cPLAα in lipid environments, we prepared a series of C1P analogs containing structural modifications in the hydrophilic parts and subjected them to surface plasmon resonance (SPR). The results suggested the presence of a specific binding site for cPLAα on the amide, 3-OH and phosphate groups in C1P structure.

View Article and Find Full Text PDF

Cork spot-like physiological disorder (CSPD) is a newly identified issue in 'Kurenainoyume' apples, yet its mechanism remains unclear. To investigate CSPD, we conducted morphological observations on 'Kurenainoyume' apples with and without pre-harvest fruit-bagging treatment using light-impermeable paper bags. Non-bagged fruit developed CSPD in mid-August, while no CSPD symptoms were observed in bagged fruit.

View Article and Find Full Text PDF

Smooth muscle cells are widely distributed in the digestive organs of chickens. They exist as single cells, but adhere to each other to function synchronously. In this study, the expression of the gap junction protein connexin 43 (Cx43) in chicken gizzards was investigated at embryonic days (E) 10, E15, and E18.

View Article and Find Full Text PDF

Firefly luciferase is used in high-throughput screening based on the detection of chemiluminescence. It catalyzes an esterification reaction of luciferin with adenosine 5'-triphosphate (ATP) followed by decarbonylation with oxygen and concomitance of light. Previously, we reported that firefly luciferase also possesses acyl-CoA synthetase activity and catalyzes an aromatic carboxylic acid group of F-53, using ATP, Mg and coenzyme A (CoA), to produce F-53 covalently attached to active-site lysine-529 residue of firefly luciferase through the formation of an amide group.

View Article and Find Full Text PDF

Portable magnetic resonance imaging (MRI) scanners can provide opportunities for mobile operation in many environments including disease screening and primary care suites. Here, we develop a new, compact transportable MRI system for imaging small joints of the extremities using a 0.2 T, 200 kg permanent magnet.

View Article and Find Full Text PDF