Publications by authors named "M N Tikhonov"

Temperature is a key determinant of microbial behaviour and survival in the environment and within hosts. At intermediate temperatures, growth rate varies according to the Arrhenius law of thermodynamics, which describes the effect of temperature on the rate of a chemical reaction. However, the mechanistic basis for this behaviour remains unclear.

View Article and Find Full Text PDF

Microbial communities play key roles across diverse environments. Predicting their function and dynamics is a key goal of microbial ecology, but detailed microscopic descriptions of these systems can be prohibitively complex. One approach to deal with this complexity is to resort to coarser representations.

View Article and Find Full Text PDF

Measuring the fitnesses of genetic variants is a fundamental objective in evolutionary biology. A standard approach for measuring microbial fitnesses in bulk involves labeling a library of genetic variants with unique sequence barcodes, competing the labeled strains in batch culture, and using deep sequencing to track changes in the barcode abundances over time. However, idiosyncratic properties of barcodes can induce nonuniform amplification or uneven sequencing coverage that causes some barcodes to be over- or under-represented in samples.

View Article and Find Full Text PDF

Sequencing surveys of microbial communities in hosts, oceans and soils have revealed ubiquitous patterns linking community composition to environmental conditions. While metabolic capabilities restrict the environments suitable for growth, the influence of ecological interactions on patterns observed in natural microbiomes remains uncertain. Here we use denitrification as a model system to demonstrate how metagenomic patterns in soil microbiomes can emerge from pH-dependent interactions.

View Article and Find Full Text PDF