We proposed and investigated a refinement of technology for obtaining Mg-doped LiNbO (LN) crystals by co-doping it with B. LN:Mg (5.0 mol%) is now the most widely used material based on bulk lithium niobate.
View Article and Find Full Text PDFThis study addresses the challenge of modeling temperature-dependent photoluminescence (PL) in CdS colloidal quantum dots (QD), where PL properties fluctuate with temperature, complicating traditional modeling approaches. The objective is to develop a predictive model capable of accurately capturing these variations using Long Short-Term Memory (LSTM) networks, which are well suited for managing temporal dependencies in time-series data. The methodology involved training the LSTM model on experimental time-series data of PL intensity and temperature.
View Article and Find Full Text PDFThe effect of cadmium ions introduced into fluorophosphate glass on the growth and photoluminescence (PL) of the CsPb1-xCdxBr3 perovskite nanocrystals (NCs) is systematically studied. The x-ray diffraction patterns have shown that cadmium ions are really incorporated into the NCs that results in a decrease in the lattice constant from 5.85 (x = 0) to 5.
View Article and Find Full Text PDFA powerful synthetic strategy for the asymmetric synthesis of enantiomerically enriched γ-functionalized α-amino acid derivatives based on the highly stereoselective proline-catalyzed Mannich-type reaction of pre-prepared or -generated γ-pyrone-derived aldimines with carbonyl compounds and subsequent transformations of multifunctional reaction products has been developed. A significant positive nonlinear effect was detected for the key organocatalytic reaction. The developed strategy was applied for facile gram-scale preparation of ()-γ-oxonorvaline, used for site-specific modification of proteins, and both enantiomers of amycolatolide A recently isolated from the lichen-derived actinomycete sp.
View Article and Find Full Text PDFIn this Letter, we report a first, to the best of our knoqledge, experimental realization of a bright ultra-broadband (180 THz) fiber-based biphoton source with widely spectrally separated signal and idler photons. Such a two-photon source is realized due to the joint use of a broadband two-loop phase-matching of interacting light waves and high optical nonlinearity of a silica-core photonic crystal fiber. The high performance of the developed fiber source identifies it as an important and useful tool for a wide range of optical quantum applications.
View Article and Find Full Text PDF