High concentrations of propylene oxide (PO) induced inflammation in the respiratory nasal mucosa (RNM) of rodents. Concentrations > or =300 ppm caused nasal tumors. In order to investigate if glutathione depletion could be relevant for these effects, we determined in PO exposed male Fischer 344/N rats PO in blood and soluble nonprotein SH-groups (NPSH) in RNM and other tissues.
View Article and Find Full Text PDFLong-term exposure of rodents to propylene oxide (PO) induced inflammation, respiratory cell hyperplasia, and nasal tumors at concentrations >/= 300 ppm, suggesting a possible role for cytotoxicity and compensatory cell proliferation in PO carcinogenesis. In this study, the effects of PO exposure on histopathology and cell proliferation in nasal and hepatic tissues were studied in male F344 rats exposed by inhalation for 3 or 20 days (0, 5, 25, 50, 300, and 500 ppm). Histopathology revealed an increase in mucous cell hyperplasia in the anterior nasal passages after 20 days of exposure (>/=300 ppm).
View Article and Find Full Text PDFPropylene oxide (PO) is a high-volume chemical intermediate that causes a low incidence of nasal tumors in rodents exposed to high concentrations (> or =300 p.p.m.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
October 2002
The detection of hemoglobin adducts by mass spectrometry is a very sensitive and specific measurement of the extent of covalent binding of electrophilic chemicals. The exposure-dependent accumulation of N-(2-hydroxypropyl)valine (N-HPVal) in globin of rats exposed to propylene oxide (PO) (0, 5, 25, 50, 300 or 500 ppm) by the inhalation route was measured to assess the utility of Hb adducts as biomarkers of exposure. Analysis of N-HPVal by gas-chromatography tandem mass spectrometry showed a linear exposure-dependent response for adduct accumulation in globin of rats exposed to PO for 3 days (6 h/day).
View Article and Find Full Text PDFPropylene oxide (PO) is a relatively weak mutagen that induces nasal tumor formation in rats during long-term inhalation studies at high exposures (> or =300 p.p.m.
View Article and Find Full Text PDF