An attenuation of visible probe radiation identified in earlier absorption studies of microwave plasma-activated CH/H/Ar gas mixtures is shown to arise from nanoparticles in under-pumped regions on opposing sides of a reactor used for diamond chemical vapor deposition. The present modeling studies highlight (i) ejection of Si-containing species into the gas phase by reactive radical etching of the quartz window through which the microwave radiation enters the reactor, enabled by suitably high window temperatures () and the synergistic action of near-window H atoms and CH radicals; (ii) subsequent processing of the ejected material, some of which are transported to and accumulate in stagnation regions in the entrance to the reactor side arms; and (iii) the importance of Si in facilitating homogeneous gas phase nucleation, clustering, and nanoparticle growth in these regions. The observed attenuation, its probe wavelength dependence, and its variations with changes in process conditions can all be rationalized by a combination of absorption and scattering contributions from Si/C/H containing nanoparticles with diameters in the range of 50-100 nm.
View Article and Find Full Text PDFThe first high-resolution translational spectroscopy studies of D atom photoproducts following excitation to the Rydberg states of DS are reported. Excitation at wavelengths λ ∼ 139.1 nm reveals an unusual 'inverse' isotope effect; the B(3←2) Rydberg state of DS predissociates much faster than its counterpart in HS.
View Article and Find Full Text PDFWe present results from a covariance ion imaging study, which employs extensive filtering, on the relationship between fragment momenta to gain deeper insight into photofragmentation dynamics. A new data analysis approach is introduced that considers the momentum partitioning between the fragments of the breakup of a molecular polycation to disentangle concurrent fragmentation channels, which yield the same ion species. We exploit this approach to examine the momentum exchange relationship between the products, which provides direct insight into the dynamics of molecular fragmentation.
View Article and Find Full Text PDFHS is being detected in the atmospheres of ever more interstellar bodies, and photolysis is an important mechanism by which it is processed. Here, we report H Rydberg atom time-of-flight measurements following the excitation of HS molecules to selected rotational (') levels of the B Rydberg state associated with the strong absorption feature at wavelengths of λ ∼ 129.1 nm.
View Article and Find Full Text PDFC-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy.
View Article and Find Full Text PDF