Gene transcription is a highly regulated process, and deregulation of transcription factors activity underlies numerous pathologies including cancer. Albeit near four decades of studies have established that the E2F pathway is a core transcriptional network that govern cell division in multi-cellular organisms, the molecular mechanisms that underlie the functions of E2F transcription factors remain incompletely understood. FOXK1 and FOXK2 transcription factors have recently emerged as important regulators of cell metabolism, autophagy and cell differentiation.
View Article and Find Full Text PDFType 1 diabetes (T1D) is an autoimmune disease in which pathogenic lymphocytes target autoantigens expressed in pancreatic islets, leading to the destruction of insulin-producing β-cells. Zinc transporter 8 (ZnT8) is a major autoantigen abundantly present on the β-cell surface. This unique molecular target offers the potential to shield β-cells against autoimmune attacks in T1D.
View Article and Find Full Text PDFThe pappalysins pregnancy associated plasma protein-A (PAPP-A) and -A2 (PAPP-A2) act as proteinases of insulin-like growth factor-1 (IGF-1) binding proteins, while stanniocalcin-2 (STC2) was identified as a pappalysin inhibitor. While there is some evidence from studies in children and adolescents, it is unclear whether these molecules are related to concentrations of IGF-1 and its binding proteins in adults. We investigated cross-sectionally the association of circulating PAPP-A, PAPP-A2 and STC2 with IGF-1 and its binding proteins (IGFBPs) in 394 adult pretest participants (20-69 years) of the German National Cohort Berlin North study center.
View Article and Find Full Text PDFIntroduction: Pregnant women often experience food aversions and cravings, of which little is known about their characteristics and consequences. The objective was to know the prevalence of food cravings and aversions, the characteristics of the pattern of foods that are craved or avoided, and the reasons behind their presence.
Methods: Observational, descriptive and cross-sectional study.
Defects in insulin processing and granule maturation are linked to pancreatic beta-cell failure during type 2 diabetes (T2D). Phosphatidylinositol transfer protein alpha (PITPNA) stimulates activity of phosphatidylinositol (PtdIns) 4-OH kinase to produce sufficient PtdIns-4-phosphate (PtdIns-4-P) in the trans-Golgi network to promote insulin granule maturation. PITPNA in beta-cells of T2D human subjects is markedly reduced suggesting its depletion accompanies beta-cell dysfunction.
View Article and Find Full Text PDF