Current Influenza virus vaccines primarily induce antibody responses against variable epitopes in hemagglutinin (HA), necessitating frequent updates. However, antibodies against neuraminidase (NA) can also confer protection against influenza, making NA an attractive target for the development of novel vaccines. In this study, we aimed to enhance the immunogenicity of recombinant NA antigens by presenting them multivalently on a nanoparticle carrier.
View Article and Find Full Text PDFPeptide display technologies are a powerful method for discovery of new bioactive sequences, but linear sequences are often very unstable in a biological setting. Macrocyclisation of such peptides is beneficial for target affinity, selectivity, stability, and cell permeability. However, macrocyclisation of a linear hit is unreliable and requires extensive structural knowledge.
View Article and Find Full Text PDFMacrocyclisation provides a means of stabilising the conformation of peptides, often resulting in improved stability, selectivity, affinity, and cell permeability. In this work, a new approach to peptide macrocyclisation is reported, using a cyanobenzothiazole-containing amino acid that can be incorporated into peptides by both in vitro translation and solid phase peptide synthesis, meaning it should be applicable to peptide discovery by mRNA display. This cyclisation proceeds rapidly, with minimal by-products, is selective over other amino acids including non N-terminal cysteines, and is compatible with further peptide elaboration exploiting such an additional cysteine in bicyclisation and derivatisation reactions.
View Article and Find Full Text PDFInfluenza A viruses pose a serious pandemic risk, while generation of efficient vaccines against seasonal variants remains challenging. There is thus a pressing need for new treatment options. We report here a set of macrocyclic peptides that inhibit influenza A virus infection at low nanomolar concentrations by binding to hemagglutinin, selected using ultrahigh-throughput screening of a diverse peptide library.
View Article and Find Full Text PDFNeuraminidase of influenza A and B viruses plays a critical role in the virus life cycle and is an important target of the host immune system. Here, we highlight the current understanding of influenza neuraminidase structure, function, antigenicity, immunogenicity, and immune protective potential. Neuraminidase inhibiting antibodies have been recognized as correlates of protection against disease caused by natural or experimental influenza A virus infection in humans.
View Article and Find Full Text PDF