Publications by authors named "M N Muz"

The increasing number of contaminants released into the environment necessitates innovative strategies for their detection and identification, particularly in complex environmental matrices like hospital wastewater. Hospital effluents contain both natural and synthetic hormones that might significantly contribute to endocrine disruption in aquatic ecosystems. In this study, HT-EDA has been implemented to identify the main effect-drivers (testosterone, androsterone and norgestrel) from hospital effluent using microplate fractionation, the AR-CALUX bioassay and an efficient data processing workflow.

View Article and Find Full Text PDF

We applied passive equilibrium sampling using silicone-based chemometers to nine biota species, sediment, and water in a multimedia aquatic ecosystem. They allowed for direct comparison of the concentration of regulated and emerging hydrophobic organic compounds in the silicone across species as well as the comparison of biota with sediments and water. We derived chemometer-based trophic magnification factors (TMFs) of diverse compounds that agreed with the traditionally derived TMFs.

View Article and Find Full Text PDF

The rapid increase in the production and global use of chemicals and their mixtures has raised concerns about their potential impact on human and environmental health. With advances in analytical techniques, in particular, high-resolution mass spectrometry (HRMS), thousands of compounds and transformation products with potential adverse effects can now be detected in environmental samples. However, identifying and prioritizing the toxicity drivers among these compounds remain a significant challenge.

View Article and Find Full Text PDF

This review examines the environmental occurrence and fate of aromatic amines (AAs), a group of environmental contaminants with possible carcinogenic and mutagenic effects. AAs are known to be partially responsible for the genotoxic traits of industrial wastewater (WW), and AA antioxidants are acutely toxic to some aquatic organisms. Still, there are gaps in the available data on sources, occurrence, transport, and fate in domestic WW and indoor environments, which complicate the prevention of adverse effects in aquatic ecosystems.

View Article and Find Full Text PDF

Aromatic amines (AAs) are human-made compounds known for their mutagenic properties, entering surface waters from various sources, often originating as transformation products of dyes or pesticides. Despite their low concentrations in surface waters, AAs can exhibit mutagenicity. Our study focused on evaluating three passive samplers (PSs) for enriching these compounds from influent and effluent of a wastewater treatment plant (WWTP) in Brno, Czech Republic.

View Article and Find Full Text PDF