The significant contact resistance at the metal-semiconductor interface is a well-documented issue for organic thin-film transistors (OTFTs) that hinders device and circuit performance. Here, this issue is tackled by developing three new thiol carbazole-based self-assembled monolayer (SAM) molecules, namely tBu-2SCz, 2SCz, and Br-2SCz, and utilizing them as carrier-selective injection interlayers. The SAMs alter the work function of gold electrodes by more than 1 eV, making them suitable for use in hole and electron-transporting OTFTs.
View Article and Find Full Text PDFThe electrocatalytic synthesis of ammonia (NH) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber-Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N) solubility in aqueous electrolytes, and the competing hydrogen evolution reaction (HER), which can significantly impact NH production rates and Faradaic efficiency (FE). Herein, a rationally designed boron-doped molybdenum sulfide (B-Mo-MoS) electrocatalyst is reported that effectively enhances N reduction to NH with an onset potential of -0.
View Article and Find Full Text PDFUltraflat metal foils are essential for semiconductor nanoelectronics applications and nanomaterial epitaxial growth. Numerous efforts have been devoted to metal surface engineering studies in the past decades. However, various challenges persist, including size limitations, polishing non-uniformities, and undesired contaminants.
View Article and Find Full Text PDF