Publications by authors named "M N Gnanapragasam"

The onset of erythropoiesis is under strict developmental control, with direct and indirect inputs influencing its derivation from the hematopoietic stem cell. A major regulator of this transition is KLF1/EKLF, a zinc finger transcription factor that plays a global role in all aspects of erythropoiesis. Here, we have identified a short, conserved enhancer element in KLF1 intron 1 that is important for establishing optimal levels of KLF1 in mouse and human cells.

View Article and Find Full Text PDF

The fetal-to-adult hemoglobin switching at about the time of birth involves a shift in expression from γ-globin to β-globin in erythroid cells. Effective re-expression of fetal γ-globin can ameliorate sickle cell anemia and β-thalassemia. Despite the physiological and clinical relevance of this switch, its posttranscriptional regulation is poorly understood.

View Article and Find Full Text PDF

Erythroblastic islands are a specialized niche that contain a central macrophage surrounded by erythroid cells at various stages of maturation. However, identifying the precise genetic and transcriptional control mechanisms in the island macrophage remains difficult due to macrophage heterogeneity. Using unbiased global sequencing and directed genetic approaches focused on early mammalian development, we find that fetal liver macrophages exhibit a unique expression signature that differentiates them from erythroid and adult macrophage cells.

View Article and Find Full Text PDF

Erythroid Krüppel-like Factor (EKLF/KLF1) is an erythroid-enriched transcription factor that plays a global role in all aspects of erythropoiesis, including cell cycle control and differentiation. We queried whether its mutation might play a role in red cell malignancies by genomic sequencing of the KLF1 transcription unit in cell lines, erythroid neoplasms, dysplastic disorders, and leukemia. In addition, we queried published databases from a number of varied sources.

View Article and Find Full Text PDF

Purpose Of Review: Transcriptional regulators provide the molecular and biochemical basis for the cell specific properties and characteristics that follow from their central role in establishing tissue-restricted expression. Precise and sequential control of terminal cell divisions, nuclear condensation, and enucleation are defining characteristics within erythropoietic differentiation. This review is focused on KLF1, a central global regulator of this process.

View Article and Find Full Text PDF