The effects of microplastic (MP) accumulation in freshwaters on organisms and ecosystem functions are poorly understood, as are the roles of MP particle properties in regulating these effects. In freshwater microcosms, we quantified variation in microbial communities and ecosystem functions and compared effects of MP concentration (0, 1000, 50000 particles/kg), shape (sphere, fragment, fibre), and polymer (polyethylene, polyethylene terephthalate, polypropylene, polystyrene) with those of a model invertebrate consumer (Chironomus riparius). We detected multiple effects of specific MP properties, especially associated with MP fragments and fibres, and the polymer polypropylene.
View Article and Find Full Text PDFPhosphorus (P) is often a limiting nutrient in freshwaters and most management actions aim to reduce eutrophication associated with excess anthropogenic P inputs. Here, we report on the opposite problem, persistent and widespread oligotrophication (i.e.
View Article and Find Full Text PDFSoils are recipients of microplastic that can be subsequently transferred to the sea. Land sources dominate inputs to the ocean, but knowledge gaps about microplastic retention by land hinder assessments of input rates. Here we present the first empirical evaluation of a dynamic microplastic fate model operating at landscape level.
View Article and Find Full Text PDFGlobally, significant societal resources are devoted to mitigating negative effects of eutrophication from excessive phosphorus (P) and nitrogen (N) loading. Potential effectiveness of mitigation measures and possible confounding factors are often assessed using studies conducted in headwater catchments. However, success is often evaluated based on trends in river mouth water chemistry.
View Article and Find Full Text PDF