The term 'neoblast' was originally coined for a particular type of cell that had been observed during annelid regeneration, but is now used to describe the pluripotent/totipotent stem cells that are indispensable for planarian regeneration. Despite having the same name, however, planarian and annelid neoblasts are morphologically and functionally distinct, and many annelid species that lack neoblasts can nonetheless substantially regenerate. To further elucidate the functions of the annelid neoblasts, a comparison was made between the regeneration patterns of two enchytraeid oligochaetes, Enchytraeus japonensis and Enchytraeus buchholzi, which possess and lack neoblasts, respectively.
View Article and Find Full Text PDFEnchytraeus japonensis is a highly regenerative oligochaete annelid that can regenerate a complete individual from a small body fragment in 4-5 days. In our previous study, we performed complementary deoxyribonucleic acid subtraction cloning to isolate genes that are upregulated during E. japonensis regeneration and identified glutamine synthetase (gs) as one of the most abundantly expressed genes during this process.
View Article and Find Full Text PDFTo identify genes specifically activated during annelid regeneration, suppression subtractive hybridization was performed with cDNAs from regenerating and intact Enchytraeus japonensis, a terrestrial oligochaete that can regenerate a complete organism from small body fragments within 4-5 days. Filter array screening subsequently revealed that about 38% of the forward-subtracted cDNA clones contained genes that were upregulated during regeneration. Two hundred seventy-nine of these clones were sequenced and found to contain 165 different sequences (79 known and 86 unknown).
View Article and Find Full Text PDFThe fragmenting potworm Enchytraeus japonensis (Oligochaeta, Annelida) reproduces asexually by dividing the body into several fragments that then regenerate to complete individuals in 4-5 days. Such large-scale regeneration, however, occurs only in some invertebrates. To better our understanding of why regeneration is so limited in many animals, despite their ability to undergo embryonic development from the single cell of a fertilized egg, comparisons were made between regeneration and embryonic development of E.
View Article and Find Full Text PDFDev Genes Evol
February 2004
Autophagy, a form of programmed cell death (PCD) that is morphologically distinguished from apoptosis, is thought to be as prevalent as apoptosis, at least during development. In insect metamorphosis, the steroid hormone 20-hydroxyecdysone (ecdysone) activates autophagic PCD to eliminate larval structures that are no longer needed. However, in comparison with apoptosis, there are not many studies on the regulation mechanisms of autophagy.
View Article and Find Full Text PDF