High charge transfer resistance and low electrocatalytic activity of counter electrodes (CEs) are mainly responsible for the poor photovoltaic performance of quantum-dot-sensitized solar cells (QDSSCs). Herein, a novel strategy has been successfully introduced for the first time to improve the electrocatalytic activity and charge transfer properties of a copper sulfide (CuS) CE by modifying it with the addition of hydrohalic acids (HHA). Through the suitable surface modification of HHA-incorporated CuS CE, the charge transfer from the external circuit to the CE surface was effectively facilitated.
View Article and Find Full Text PDFThe photovoltaic performance of quantum dot sensitized solar cells (QDSSCs) is limited due to charge recombination processes at the photoelectrode/electrolyte interfaces. We analyzed the effect of Sn ion incorporation into CdS quantum dots (QDs) deposited onto TiO substrates in terms of enhancing light absorption and retarding electron-hole recombination at the TiO/QDs/electrolyte interfaces. Sensitization involved depositing CdS QDs with different Sn concentrations on the surface of TiO using a facile and cost-effective successive ionic layer adsorption and reaction (SILAR) method.
View Article and Find Full Text PDFWe have reported that norepinephrine (NE) and angiotensin II (Ang II) increase CaM kinase II activity, which, in turn, activates cytosolic phospholipase A(2) (PLA(2)) and releases arachidonic acid. The products of arachidonic acid generated via cytochrome P-450 and lipoxygenase contribute to the development of hypertension and vascular smooth muscle cell (VSMC) hyperplasia. The purpose of this study was to investigate whether CaM kinase II contributes to VSMC proliferation elicited by NE and Ang II and to hypertension induced by Ang II.
View Article and Find Full Text PDFCalcium-/calmodulin-dependent protein kinase II (CaM kinase II), a decoder of Ca(2+) signals, and cytosolic phospholipase A(2) (cPLA(2)), an enzyme involved in arachidonate release, are involved in many physiological and pathophysiological processes. Activation of CaM kinase II in norepinephrine-stimulated vascular smooth muscle cells leads to activation of cPLA(2) and arachidonic acid release. Surface plasmon resonance, mass spectrometry, and kinetic studies show that CaM kinase II binds to cPLA(2) resulting in cPLA(2) phosphorylation on Ser-515 and an increase in its enzymatic activity.
View Article and Find Full Text PDFThe signaling mechanisms downstream of growth factor-stimulated proliferation in myeloid leukemia cells have not yet been fully elucidated. Recent evidence suggests that alternate pathways to the mitogen-activated protein kinase cascade are required. We have previously shown that Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) activates cytosolic phospholipase A2 (cPLA2), which is involved in the proliferation of vascular smooth muscle cells.
View Article and Find Full Text PDF