Publications by authors named "M Mutanen"

The relationship of Mikkola, 1980; Mikkola, 1998; and Mikkola, 1998 is reconsidered based on 59 genitalia slides (37 males and 22 females) and 40 barcodes of adults collected from the type localities and areas in-between. Due to lack of stable morphologic differences, apart from the wing coloration of , and low genetic distance between the three, they are considered as three subspecies of : the nominotypical one and Included are photographs of all specimens covering 37 adults, and 28 male and 18 female genitalia, as well as a phylogenetic tree and a map showing collecting localities.

View Article and Find Full Text PDF

Understanding infant and young child feeding (IYCF) practices in Africa requires an examination of the social context. Social relationships influence people through mechanisms such as social support, social influence, social engagement, access to resources and negative social interactions. This study explores how these mechanisms manifest in IYCF in remote villages in Uganda.

View Article and Find Full Text PDF

We analyzed COI barcode sequences from 138 over-a-century old specimens of Calinaga including 36 name-bearing type specimens stored at the Natural History Museum London. These new data, combined with previously available RPS5 sequences, divide the Calinaga samples into four well-supported mitochondrial lineages that together with a novel wing-pattern analysis, support the recognition of six species (lhatso, buddha, brahma, aborica, formosana and davidis), with all other names subsumed either as subspecies or synonyms. One new taxon is described, Calinaga aborica naima Vane-Wright, ssp.

View Article and Find Full Text PDF

Global biodiversity gradients are generally expected to reflect greater species replacement closer to the equator. However, empirical validation of global biodiversity gradients largely relies on vertebrates, plants, and other less diverse taxa. Here we assess the temporal and spatial dynamics of global arthropod biodiversity dynamics using a beta-diversity framework.

View Article and Find Full Text PDF

Double-digest restriction site-associated DNA sequencing is a library preparation protocol that enables capturing variable sites across the genome including single-nucleotide polymorphisms (SNPs). These SNPs can be utilized to gain evolutionary insights into patterns observed in DNA barcodes, to infer population structure and phylogenies, to detect gene flow and introgression, and to perform species delimitation analyses. The protocol includes chemically shearing genomic DNA with restriction enzymes, unique tagging, size selection, and amplification of the resulting DNA fragments.

View Article and Find Full Text PDF